BBA 45711

THE EFFECT OF DEUTERIUM OXIDE ON RESPIRATORY-CHAIN PHOSPHORYLATION IN SUB-MITOCHONDRIAL PARTICLES

S. MURAOKA AND E. C. SLATER

Laboratory of Biochemistry, B. C. P. Jansen Institute*, University of Amsterdam, Amsterdam (The Netherlands)

(Received May 3rd, 1968)

SUMMARY

- 1. The P:O ratio of sub-mitochondrial particles prepared by sonication at pH 8.6 is stimulated by both $^2\mathrm{H}_2\mathrm{O}$ and by oligomycin. The stimulations are approximately equal and are additive.
 - 2. The stimulatory effect of ${}^{2}H_{2}O$ is also additive to that of $F_{1}^{-}X$ (ref. 9).
- 3. The P:O ratio of sub-mitochondrial particles prepared by sonication at pH 7.4, which is not affected by low concentrations of oligomycin, is also stimulated by ${}^{2}\mathrm{H}_{2}\mathrm{O}$.
- 4. The increase in the P:O ratio brought about by 2H_2O is primarily caused by an inhibition of the oxygen uptake. Phosphorylation is either not affected, or is little affected.
- 5. The results support the view that the hydrolysis of an intermediate of oxidative phosphorylation is slower in ${}^{2}H_{2}O$ than in $H_{2}O$. If this interpretation of the effect of ${}^{2}H_{2}O$ is correct, it would seem unlikely that the stimulatory effects of oligomycin and F_{1} -X are due to inhibition of the hydrolytic reaction that is affected by ${}^{2}H_{2}O$.

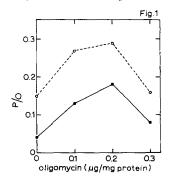
In 1949 Shibata and Watanabel found that ${}^2{\rm H}_2{\rm O}$ inhibits the action of several oxidizing enzymes including mushroom cytochrome c oxidase, and suggested that "activated water" is concerned not only in hydrolytic enzymes, but also in oxidizing enzymes.

In 1953 SLATER² suggested that in non-phosphorylating preparations of the respiratory chain a hydrolytic reaction (Eqn. 2) is required for the release of components of the respiratory chain from bound (high-energy) forms synthesized by an energy-conserving reaction (Eqn. 1).

$$AH_2 + B + C \rightleftharpoons A \sim C + BH_2 \tag{I}$$

$$A \sim C + H_2O \rightarrow A + C \tag{2}$$

LASER AND SLATER³ brought forward as evidence in support of this view the observation that those oxidoreductions that in intact mitochondria are coupled with phosphorylation (supposedly *via* Eqn. 3),


$$A \sim C + ADP + P_1 \rightleftharpoons A + C + ATP \tag{3}$$

^{*} Postal address: Plantage Muidergracht 12, Amsterdam, The Netherlands.

are inhibited by 2H_2O in sub-mitochondrial particles in which the phosphorylation reaction is lacking. Simpler hydrogen transfers to methylene blue proceed at the same rate in H_2O and 2H_2O . SLATER⁴ concluded that a reaction involving the hydrogen atoms of water is a rate-limiting step of the respiratory chain of non-phosphorylating preparations and that replacement of H by 2H slows down this reaction.

The effects of ²H₂O have recently been studied by Tyler and Estabrook⁵, BAUM AND RIESKE⁶ and MARGOLIS, BAUM AND LENAZ⁷. The results in these and the earlier studies^{3,4} may be summarized: (1) The respiration of both non-phosphorylating particles and of intact mitochondria (in the presence of ADP + phosphate, or of dinitrophenol) is inhibited^{3,5-7}. (2) The P:O ratio of phosphorylating sub-mitochondrial particles is markedly and of intact mitochondria slightly greater in 2H2O medium than in H₂O. (3) The steady-state reduction of nicotinamide nucleotide and the cytochromes is the same in a ²H₂O-inhibited system as in water⁵. (4) ²H₂O also inhibits electron transfer between cytochromes b and c_1 in Complex III (ref. 6). (5) Glycerol 5,6 and other organic solvents 5 and a high pH (ref. 6) inhibit the oxidation reactions in the same way as ²H₂O. The degree of inhibition by organic solvents is correlated with the decrease of the concentration of water⁵. (6) ²H₂O inhibits the energy-linked nicotinamide nucleotide transhydrogenase (without any effect on the NADPH:O ratio) and the Mg2+-stimulated ATPase, but has little effect on the ATP-P₁ exchange reaction or on the dinitrophenol-induced ATPase⁷. (7) The decrease of the P:O ratio brought about by uncouplers is not affected by ²H₂O (refs. 3, 7).

Although the stimulation of the P:O ratio by ²H₂O is in agreement with the mechanism of action of ²H₂O proposed by LASER AND SLATER^{3,4}, other effects of ²H₂O described, in particular the inhibition of respiration of intact mitochondria and

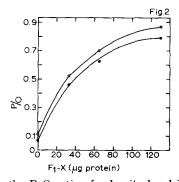


Fig. 1. Effect of oligomycin concentration on the P:O ratio of sub-mitochondrial particles in 96.7% 2H_2O and in water. The reaction mixture contained 25 mM Tris-HCl buffer (pH 7.4), 0.14 M sucrose, 20 mM phosphate, 1 mM ADP, 32 mM succinate, 20 mM glucose, 3 mM MgCl₂, 1 mM EDTA, 0.1 μ g rotenone, 39 units (μ mole/min) hexokinase, 2% ethanol and 1 mg particles in a total volume of 1 ml. The sub-mitochondrial particles were obtained by sonication at pH 8.6. \bigcirc --- \bigcirc , in 96.7% 2H_2O ; \bigcirc -- \bigcirc , in H₂O.

Fig. 2. Effect of the concentration of coupling factor (F₁-X) (ref. 9) on the P:O ratio of submitochondrial particles in 98% $^2\text{H}_2\text{O}$ and H₂O. 0.5-mg particles were preincubated at room temperature in 0.3 ml of a solution containing 2 μ moles MgSO₄, 2 μ moles ATP, 30 μ moles potassium phosphate (pH 7.4) and various amounts of F₁-X. After 5 min the reaction was started by adding 0.2 ml of a solution containing 1 μ mole MgSO₄, 0.5 μ mole ATP, 16 μ moles glucose, 2.5 μ moles Tris-sulphate buffer (pH 7.4), 0.25 μ mole EDTA, 10 μ moles sodium succinate, 0.5 mg bovine serum albumin, 30 units of hexokinase and 300000 counts/min carrier-free $^{32}\text{P}_1$. The submitochondrial particles were obtained by sonication at pH 8.7. O—O, in 98% $^{2}\text{H}_2\text{O}$; ——•, in H₂O.

the inhibition of the energy-linked transhydrogenase in sub-mitochondrial particles are not. For this reason further studies were carried out.

Fig. 1 shows the effect of 96.7 % 2H_2O on the P:O ratio of sub-mitochondrial particles, prepared by sonication at pH 8.6, at various concentrations of oligomycin. The stimulatory effect of 2H_2O is about the same as, and is additive to, that of oligomycin⁸, and the optimal concentration of oligomycin is about the same in 2H_2O as in H_2O . The stimulatory effect of 2H_2O on the P:O ratio is also additive to that of the coupling factor F_1 -X (ref. 9), as shown in Fig. 2.

Dinitrophenol (0.1 mM) was found to have no effect on the inhibition by ${}^{2}H_{2}O$ of succinate oxidation by these particles. Uncoupling by dinitrophenol was also the same in ${}^{2}H_{2}O$ as in $H_{2}O$ (cf. refs. 3, 7).

The P:O ratio of sub-mitochondrial particles prepared by sonication at pH 7.4, which is not affected by low concentrations of oligomycin⁸, is also stimulated by ²H_oO (Fig. 3).

The experiments described in Figs. 1-3 were carried out under conditions of constant buffer ratio, without any correction for the effect of ${}^{2}\mathrm{H}_{2}\mathrm{O}$ on $\mathrm{p}L$ (where L includes both H^{+} and ${}^{2}\mathrm{H}^{+}$). The reaction mixtures gave about the same reading with a pH meter (glass electrode). This means that the actual $\mathrm{p}L$ of the mixture in ${}^{2}\mathrm{H}_{2}\mathrm{O}$ was about 0.4 higher than that in $\mathrm{H}_{2}\mathrm{O}$ (ref. 10). An increase of pH of 0.4 in $\mathrm{H}_{2}\mathrm{O}$ caused a decline of the P:O ratio by 28%. Thus the stimulatory effect of ${}^{2}\mathrm{H}_{2}\mathrm{O}$ on the P:O ratio is underestimated in these experiments.

In the experiment described in Fig. 4, the pL was adjusted to 7.4 by the addition of increasing amounts of HCl as the concentration of $^2\mathrm{H}_2\mathrm{O}$ increased. In this experiment, 80% or more of $^2\mathrm{H}_2\mathrm{O}$ caused inhibition of the oxygen uptake without any effect on the phosphorylation, with a consequent increase in the P:O ratio. In a second experiment (not shown) both the oxygen uptake and the phosphorylation

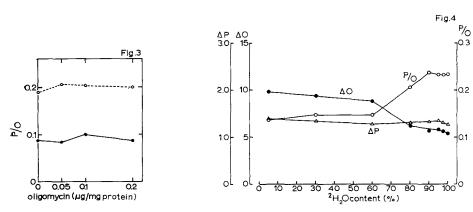


Fig. 3. Effect of oligomycin concentration on the P:O ratio of sub-mitochondrial particles in 96.7 % 2H_2O and H_2O . The reaction mixture was the same as in Fig. 1. 1.0 mg particles was used. The sub-mitochondrial particles were obtained by sonication at pH 7.4. O---O, in 96.7 % 2H_2O ; \bullet — \bullet , in H_2O .

Fig. 4. Effect of concentration of ${}^{2}H_{2}O$ on the oxidation of succinate by sub-mitochondrial particles and on oxidative phosphorylation. The reaction mixture was the same as in Fig. 1, except that it was adjusted to a constant pL of 7.4 (see text). 1 mg sub-mitochondrial particles obtained by sonication at pH 7.4 was used. $\bullet - \bullet$, oxygen (μ atoms) consumed; $\triangle - \triangle$, phosphate (μ moles) esterified; $\bigcirc - \bigcirc$, P:O ratio.

were inhibited by high concentrations of 2H_2O , but the phosphorylation was inhibited less than the oxygen uptake, resulting also in an increased P:O ratio. The concentration of 2H_2O required to inhibit the oxygen uptake also varied from preparation to preparation.

The much greater effect of 2H_2O on oxidation than on phosphorylation supports the view^{3,4} that the hydrolysis of an intermediate of oxidative phorphorylation (A ~ C) is slower in 2H_2O than in H_2O . Many hydrolytic reactions are slower in 2H_2O than in H_2O (ref. II). If this interpretation of the effect of 2H_2O is correct, it would seem unlikely that the stimulatory effects of oligomycin⁸ and F_1 -X (ref. 9) on the P:O ratio are due to the inhibition of the same hydrolytic reaction, since the effects of 2H_2O are additive with those of F_1 -X or oligomycin. Moreover, the P:O ratio of particles prepared by sonication at pH 7.4 is stimulated by 2H_2O but not by oligomycin. The effects of oligomycin and F_1 -X are not additive with one another⁹.

The mechanism of action of 2H_2O may also be distinguished from the effect of an inhibitor such as malonate that restricts the entry of reducing equivalents into the respiratory chain. Inhibition of respiration by malonate has no effect on the P:O ratio¹², but increases the NADPH:O ratio of the energy-linked transhydrogenase^{7,12,13}. Inhibition of respiration by 2H_2O causes a stimulation of the P:O ratio but has no effect on the NADPH:O ratio⁷. Van Dam and Ter Welle¹² have shown that the supply of A \sim C is not the limiting factor in the energy-linked transhydrogenase reaction.

Inhibition by ${}^2\mathrm{H}_2\mathrm{O}$ of both respiration and phosphorylation in intact mitochondria⁵, with only a slight effect on the P:O ratio, cannot be explained by an inhibition of the hydrolysis of A \sim C, since this reaction is not thought to take place in tightly coupled mitochondria. It is possible that the effects in intact mitochondria represent an inhibition of the interaction of the components of the respiratory chain with one another, as envisaged by Tyler and Estabrook⁵ and Baum and Rieske⁶. It is also possible that the different effects on intact mitochondria and sub-mitochondrial particles have a common basis, that is at present obscure.

EXPERIMENTAL

Sub-mitochondrial particles. These were prepared from beef-heart mitochondria¹⁴ by sonication in the presence of 2 mM EDTA (ref. 15), either at pH 8.7 (ref. 8) or at pH 7.4. The particles were washed in 0.25 M sucrose dissolved in ²H₂O and suspended in the same solution.

Oxidative phosphorylation. Oxygen uptake was followed in differential manometers for 30 min at 25°. The reaction was stopped by the addition of 0.5 ml of 40% (w/v) trichloroacetic acid. The amount of esterified phosphate was measured enzymically^{16,17} or by the incorporation of 32 P into the hexose monophosphate¹⁸.

The reaction media were prepared by lyophilizing the aqueous reaction mixture and dissolving in water or in the appropriate mixture of ${}^2\mathrm{H}_2\mathrm{O}$ and water. The percentage of ${}^2\mathrm{H}_2\mathrm{O}$ in the final reaction mixture refers to the final concentration after the addition of the sub-mitochondrial particles suspended in ${}^2\mathrm{H}_2\mathrm{O}$.

F₁-X was isolated as described by Vallejos, Van den Berg and Slater.

The ²H₂O, containing 99.7 atom% ²H, was obtained from Philips-Duphar.

Oligomycin, kindly donated by the Upjohn Chemical Co., and rotenone obtained from

S. B. Penick and Co. were added in ethanol. Hexokinase was obtained from Boehringer und Soehne and dialysed against 1 % glucose, 40 mM Tris-HCl buffer (pH 7.4) and 1.25 mM EDTA.

Protein was determined by the biuret method as applied to mitochondria by CLELAND AND SLATER¹⁹.

ACKNOWLEDGEMENTS

We thank Dr. R. H. VALLEJOS for his collaboration in the experiment shown in Fig. 2. This work was supported in part by grants from the U.S. Public Health Service (Grant No. A.M. 08690) and the Life Insurance Medical Research Fund.

REFERENCES

- I K. SHIBATA AND A. WATANABE, Acta Phytochimica, 15 (1949) 169.
- 2 E. C. SLATER, Nature, 172 (1953) 975.
- 3 H. LASER AND E. C. SLATER, Nature, 187 (1960) 1115.
- 4 E. C. SLATER, in Symp. on Intracellular Respiration: Phosphorylating and Non-Phosphorylating Oxidation Reactions, Proc. 5th Intern. Congr. Biochem., Moscow, 1961, Vol. 5, Pergamon Press, London, 1963, p. 325.
- 5 D. D. Tyler and R. W. Estabrook, J. Biol. Chem., 241 (1966) 1672.
- 6 H. BAUM AND J. S. RIESKE, Biochem. Biophys. Res. Commun., 24 (1966) 1.
- 7 S. A. MARGOLIS, H. BAUM AND G. LENAZ, Biochem. Biophys. Res. Commun., 25 (1966) 133.
- 8 C.-P. LEE AND L. ERNSTER, Biochem. Biophys. Res. Commun., 18 (1965) 523.
- 9 R. H. VALLEJOS, S. G. VAN DEN BERGH AND E. C. SLATER, Biochim. Biophys. Acta, 153 (1968)
- IO P. SALOMAA, L. L. SCHALEGER AND F. A. LONG, J. Am. Chem. Soc., 86 (1964) 1.
- 11 F. A. Long, Ann. N.Y. Acad. Sci., 84 (1960) 596.
- 12 K. VAN DAM AND H. F. TER WELLE, in J. M. TAGER, S. PAPA, E. QUAGLIARIELLO AND E. C. SLATER, Regulation of Metabolic Processes in Mitochondria (B.B.A. Library, Vol. 7), Elsevier, Amsterdam, 1966, p. 235.
- 13 C.-P. LEE AND L. ERNSTER, Biochem. Biophys. Res. Commun., 23 (1966) 176.
- 14 F. L. CRANE, J. L. GLENN AND D. E. GREEN, Biochim. Biophys. Acta, 22 (1956) 475. 15 C.-P. LEE, G. F. Azzone and L. Ernster, Nature, 201 (1964) 152.
- 16 E. C. SLATER, Biochem. J., 53 (1953) 157. 17 E. C. SLATER, Biochem. J., 53 (1953) 521.
- 18 S. O. NIELSEN AND A. L. LEHNINGER, J. Biol. Chem., 215 (1955) 555.
- 19 K. W. CLELAND AND E. C. SLATER, Biochem. J., 53 (1953) 547.

Biochim. Biophys. Acta, 162 (1968) 170-174